skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Conley, Elizabeth A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Candida albicans is a commensal fungus that can cause epithelial infections and life-threatening invasive candidiasis. The fungus secretes candidalysin (CL), a peptide that causes cell damage and immune activation by permeation of epithelial membranes. The mechanism of CL action involves strong peptide assembly into polymers in solution. The free ends of linear CL polymers can join, forming loops that become pores upon binding to membranes. CL polymers constitute a therapeutic target for candidiasis, but little is known about CL self-assembly in solution. Here, we examine the assembly mechanism of CL in the absence of membranes using complementary biophysical tools, including a new fluorescence polymerization assay, mass photometry, and atomic force microscopy. We observed that CL assembly is slow, as tracked with the fluorescent marker C-laurdan. Single-molecule methods showed that CL polymerization involves a convolution of four processes. Self-assembly begins with the formation of a basic subunit, thought to be a CL octamer that is the polymer seed. Polymerization proceeds via the addition of octamers, and as polymers grow they can curve and form loops. Alternatively, secondary polymerization can occur and cause branching. Interplay between the different rates determines the distribution of CL particle types, indicating a kinetic control mechanism. This work elucidates key physical attributes underlying CL self-assembly which may eventually evoke pharmaceutical development. 
    more » « less
  2. Abstract The fundamental molecules of life are polymers. Prominent examples include nucleic acids and proteins, both of which exhibit a large array of mechanical properties and three-dimensional shapes. The bending rigidity of individual polymers is quantified by the persistence length. The shape of a polymer, dictated by the topology of the polymer backbone, a line trace through the center of the polymer along the contour path, is also an important characteristic. Common biomolecular architectures include linear, cyclic (ring-like), and branched structures; combinations of these can also exist, as in complex polymer networks. Determination of persistence length and shape are largely informative to polymer function and stability in biological environments. Here we demonstratePersistence lengthShapePolymer (PS Poly), a near-fully automated algorithm designed to obtain polymer persistence length and shape from single molecule images obtained in physiologically relevant fluid conditions via atomic force microscopy. The algorithm, which involves image reduction via skeletonization followed by end point and branch point detection, is capable of rapidly analyzing thousands of polymers with subpixel precision. Algorithm outputs were verified by analysis of deoxyribonucleic acid, a very well characterized macromolecule. The method was further demonstrated by application to candidalysin, a recently discovered and complex virulence factor fromCandida albicans. Candidalysin forms polymers of highly variable shape and contour length and represents the first peptide toxin identified in a human fungal pathogen. PS Poly is a robust and general algorithm. It can be used to extract fundamental information about polymer backbone stiffness, shape, and more generally, polymerization mechanisms. 
    more » « less
  3. The fungus Candida albicans is the most common cause of yeast infections in humans. Like many other disease-causing microbes, it releases several virulent proteins that invade and damage human cells. This includes the peptide candidalysin which has been shown to be crucial for infection. Human cells are surrounded by a protective membrane that separates their interior from their external environment. Previous work showed that candidalysin damages the cell membrane to promote infection. However, how candidalysin does this remained unclear. Similar peptides and proteins cause harm by inserting themselves into the membrane and then grouping together to form a ring. This creates a hole, or ‘pore’, that weakens the membrane and allows other molecules into the cell’s interior. Here, Russell, Schaefer et al. show that candidalysin uses a unique pore forming mechanism to impair the membrane of human cells. A combination of biophysical and cell biology techniques revealed that the peptide groups together to form a chain. This chain of candidalysin proteins then closes in on itself to create a loop structure that can insert into the membrane to form a pore. Once embedded within the membrane, the proteins within the loops rearrange again to make the pores more stable so they can cause greater damage. This type of pore formation has not been observed before, and may open up new avenues of research. For instance, researchers could use this information to develop inhibitors that stop candidalysin from forming chains and harming the membranes of cells. This could help treat the infections caused by C. albicans. 
    more » « less